Pular para o conteúdo principal

Grandezas vetoriais e grandezas escalares

Grandezas vetoriais e grandezas escalares



OrientaçãoA Física lida com um amplo conjunto de grandezas. Dentro dessa gama enorme de grandezas existem algumas, cuja caracterização completa requer tão somente um número seguido de uma unidade de medida. Tais grandezas são chamadas grandezas escalares. Exemplos dessas grandezas são a massa e a temperatura.
Uma vez especificado que a massa é 1kg ou a temperatura é 32ºC, não precisamos de mais nada para caracterizá-las.

Massa como grandeza escalar








Resumindo:
Uma grandeza vetorial é tal que sua caracterização completa requer um conjunto de três atributos:o móduloa direção e o sentido.


Direção: é aquilo que existe de comum num feixe de retas paralelas.
direcao

Sentido: podemos percorrer uma direção em dois sentidos.


sentido
Portanto, para cada direção existem dois sentidos.
Além da posição, a velocidade, a aceleração e a força são, por exemplo, grandezas vetoriais relevantes na Mecânica.

Lidar com grandezas escalares é muito fácil. Fazer adição de duas grandezas escalares é simples. Por exemplo, 3kg acrescidos de 2kg dá 5kg.

Trabalhar com grandezas vetoriais já não é tão simples. Considere o caso da adição de duas grandezas vetoriais. Como é possível adicionar grandezas que, além dos respectivos módulos, têm direções e sentidos diferentes? Ou ainda efetuar subtrações e multiplicações de grandezas vetoriais?

Somar grandezas vetoriais, bem como realizar as demais operações, é fundamental em Física. Se aplicarmos duas forças a um corpo, qual será o resultado da adição dessas duas forças? Certamente, não podemos simplesmente somar os módulos.
A melhor forma de se lidar com grandezas vetoriais é introduzir um ente conhecido como vetor. O vetor representa, para efeito de se determinar o módulo, a direção e o sentido, da grandeza física.

Utilizando-se a representação através de vetores poderemos definir a soma, a subtração e as multiplicações de grandezas vetoriais.
Ao longo do texto vamos estabelecer a distinção entre grandezas vetoriais e escalares, colocando uma flechinha sobre as primeiras:
 = vetor aceleração ,
 = vetor velocidade ,
 = vetor posição ,
 = vetor força .
REPRESENTAÇÃO GRÁFICA DE VETORES
Um vetor  é representado graficamente através de um segmento orientado (uma flecha). A vantagem dessa representação é que ela permite especificar a direção (e esta é dada pela reta que contém a flecha) e o sentido (especificado pela farpa da flecha). Além disso, o seu módulo (indicado com v ou  ) será especificado pelo "tamanho" da flecha, a partir de alguma convenção para a escala.

Operação com vetores


A representação gráfica apresentada acima permite-nos executar uma série de operações com vetores (soma, subtração etc.). Podemos agora dizer, por exemplo, quando dois vetores são iguais. Eles são chamados de idênticos se tiverem o mesmo módulo, a mesma direção e o mesmo sentido.

A seguir, vão as definições das operações.

Multiplicação por um escalar (por um número)


Podemos multiplicar um vetor  por um número . Dessa operação resulta um novo vetor:
 ,
com as seguintes características:
a) O módulo do novo vetor é o que resulta da multiplicação do valor absoluto de  pelo módulo de .

b) A direção do novo vetor é a mesma de .

c) O sentido de R é o mesmo de  se  for positivo e oposto ao de  se  < 0.

Soma de vetores


Sejam  e  dois vetores. A soma desses vetores é um terceiro vetor, o vetor resultante:
 .
Para determinarmos o módulo, a direção e o sentido desse vetor resultante, utilizamos a regra do paralelogramo.

Primeiramente, desenhamos o paralelogramo definido a partir dos vetores  e .
soma de vetores
a) Módulo do vetor resultante:
É dado pelo comprimento da diagonal indicada na figura. Portanto,
v2 = v12 + v22 + 2v1v2cos ,
onde  é o ângulo entre os dois vetores.
b) Direção:
Aquela da reta que contém a diagonal.
c) Sentido:
A partir do vértice formado pelos dois vetores.
Portanto o vetor resultante é obtido desenhando-se uma das figuras abaixo:
vetores resultantes

Adição de vetores-polígono

Subtração de vetores


Consideremos os vetores  e . A subtração de vetores
 ,
resulta em um terceiro vetor (chamado resultante), cujas propriedades são inferidas a partir da soma dos vetores  e ().
O vetor tem módulo e direção iguais ao do vetor  mas tem o sentido oposto. Reduzimos o problema da subtração de dois vetores ao problema da soma de  e .
subtração

vetor

Comentários

Sara s. disse…
Parabens PROF.
O conteudo do seu blog, é otimo .

Esgam.

Postagens mais visitadas deste blog

Dilatação Anômala da Água Exercícios

DILATAÇÃO ANÔMALA DA ÁGUA A água possui um comportamento anômalo em sua dilatação. Observe o diagrama volume x temperatura a seguir, no qual e mostrado esse comportamento incomum da água. Quando uma substância é aquecida, ela recebe energia de forma que suas moléculas ficam agitadas, passando a ocupar um maior volume, ou seja, sofre dilatação. O oposto ocorre quando uma substância é resfriada, pois ela perde energia e suas moléculas tendem a ficar bem próximas umas das outras, causando uma contração no volume. Isso faz com que, normalmente, a matéria no estado sólido ocupe menos volume do que quando está no estado líquido. Ao contrário do que acontece com a maioria das substâncias, a água possui um comportamento anômalo: quando é aquecida, entre os intervalos de 0 e 4º C, ela sofre contração e depois começa a dilatar-se, ou seja, quando a água está em seu estado sólido, ela tem volume maior do que no estado líquido nesse intervalo de temperatura. Esse com...

Exercícios de Física transformar km/h em m/s.

EXERCÍCIOS RESOLVIDOS - Converter/transformar km/h em m/s. 01) Um carro esta percorrendo uma via em linha reta a velocidade de 36km/h. Qual a velocidade deste carro em m/s? 36km/h =        36:3,6 =  10m/s  A velocidade do carro é 10m/s. 02) Um pássaro esta sobrevoando um prédio a  velocidade de 54km/h.  Qual a velocidade deste  pássaro em m/s? 54km/h 54:3,6= 15m/s  A velocidade do passaro é 15m/s 03) Ao passar sobre um aeroporto o avião diminuí sua  velocidade para 43,2km/h.  Qual a velocidade deste  avião em m/s? 43,2km/h 43,2:3,6= 12m/s A velocidade do avião é 12m/s Transformação de km/h para m/s (SI) Para transformar Km/h para m/s , basta dividir por 3,6. Para transformar m/s para Km/h , basta multiplicar por 3,6. Exemplos: a) Transformando km/h para m/s 72 km/h = 72:3,6 = 20 ...

Exercícios de Aceleração 9º ano com gabarito

Aceleração escalar média -  Exercícios de Aceleração 9º ano com gabarito 01     Um móvel parte do repouso e, após 5 s de movimento, atinge a velocidade de 20 m/s. Qual foi a aceleração escalar média deste móvel? 02.   Se um veículo passa sua velocidade de 2 m/s para 12 m/s  em 2 s, qual sua aceleração escalar média? 03.   Um móvel com velocidade de 30 m/s freia e para após 6 s. Qual sua aceleração escalar média? 04.   Um carro consegue, á partir do repouso, atingir uma velocidade de 108 km/h em 10 s. Qual a aceleração escalar média desse carro? 05.   Um veículo que se encontra em repouso, passa a sofrer a ação de uma aceleração escalar média de 4 m/s 2 . Qual será sua velocidade após 3,5 s? 06.   Uma partícula se encontra com uma velocidade de 8 m/s quando passa a ser acelerada durante 4 s por uma aceleração escalar média de 2,8 m/s 2 . Qual será a velocidade dessa partícula após esse tempo...