Pular para o conteúdo principal

Uma bateria elétrica de batatas


 Batateria(Uma bateria elétrica de batatas)
Prof. Luiz Ferraz Netto
leobarretos@uol.com.br
ObjetivoEstudar o funcionamento das células voltáicas e associações em série. Uma batata cortada pela metade, duas plaquinhas de cobre e duas plaquinhas de zinco, permitem a confecção de uma batateria capaz de acionar um relógio digital por, pelo menos, dois meses. Com certos 'cuidados', os quais comentaremos, esse tempo de uso pode ser estendido para cerca de quatro meses.
ApresentaçãoOs modernos relógios digitais a cristal de quartzo requerem uma baixíssima intensidade de corrente elétrica para seu funcionamento. Se você tiver um bom microamperômetro poderá constatar que ela será algo como1,5 x 10-6 A sob tensão elétrica (d.d.p.) de 1,35 V. É devido a isso que tais relógios podem funcionar com as minúsculas baterias 'botões' que geram uma f.e.m. entre 1,2 a 1,4 volts, notadamente as baterias com células de mercúrio.
Os experimentos a seguir aproveitam-se dessa propriedade inerente aos circuitos eletrônicos --- funcionarem com baixíssimas intensidades de corrente elétrica.
O que faremos, essencialmente, será construir 'baterias' a partir de duas 'células voltáicas' que produzirão, cada uma, 0,6 a 0,7 V. Dois eletrodos distintos (plaquinhas de cobre e zinco) serão introduzidos em meias-batata (ou quiabo, ou limão, ou abacaxi, etc.) e associados em série de modo a constituírem uma bateria [associação de duas pilhas primárias (células voltaicas)].
Fazendo uma pilha primáriaCorte uma batata pela metade. Corte duas chapinhas, uma de cobre outra de zinco, com cerca de (2 x 4) cm. Qualquer espessura das chapinhas entre 1 e 2 mm servirá; essas chapinhas serão os eletrodos da pilha primária.
Solde em cada uma dessas plaquinhas um fio de cobre flexível (cabinho 22) com cerca de 20 cm de comprimento (descasque as extremidades e estanhe-as --- passe solda!). Espete as plaquinhas na meia-batata (bem perpendicular à superfície cortada) deixando para fora apenas cerca de 1 cm e separada por cerca de 0,8 cm. Não deixe as  plaquinhas se encontrarem dentro da meia-batata! Veja a ilustração:
Fazendo a 'batateria'Essa pilha de meia-batata apresentará força eletromotriz (f.e.m.) de cerca de 0,7 V, o que pode ser constatado mediante um bom voltômetro (resistência interna grande) conectado aos dois fios indicados acima. Como iremos necessitar de cerca de 1,4 V para acionar o relógio digital deveremos construir uma bateria a partir de duas dessas pilhas primárias e associando-as 'em série', como se ilustra:
Preparando o relógioQualquer relógio digital que utilize uma bateria botão poderá ser usado. O que utilizei é um "CITIZEN - CRYSTON LC". A primeira coisa a fazer é remover a tampinha em forma de disco do alojamento da bateria botão. Retire a bateria 'pifada'. Olhe bem para essa bateria e repare que o "corpo" dela corresponde ao pólo positivo enquanto que o "botão superior" corresponde ao pólo negativo. Veja dentro do local de alojamento dessa bateria as duas lâminas de contato, uma que encosta no pólo positivo da bateria e outra que encosta no pólo negativo. Solde nessa pequenas lâminas dois pedaços de cabinho 22, um vermelho ligado na 'lâmina positiva' e um preto ligado na 'lâmina negativa'. 
O fio que vem da plaquinha de cobre da 'batateria' deve ser ligado ao fio vermelho do relógio e o fio que vem da plaquinha de zinco da 'batateria' deve ser ligado ao fio preto do relógio.
Pronto! O relógio já deve estar funcionando. Eis as ilustrações de minha montagem:
À esquerda a proteção de madeira para a montagem; numa divisão foi feito o orifício para inserir o relógio, na outra foi colocado um pires 'quadrado' para conter as meias-batatas. À direita um destaque da montagem. Abaixo, detalhes da parte posterior da montagem.

Análise do circuitoA tensão elétrica útil (U) entre os terminais de cada pilha primária, pode ser expressa em termos de sua f.e.m. (E), de sua resistência interna (r) e da corrente de intensidade i que por ela circula, assim : U = E - r.i , mostrando, claramente, que a tensão útil depende da intensidade da corrente elétrica solicitada (i).
Em circuito aberto, um bom voltômetro (Rv,int-->¥) conectado aos eletrodos fornece Uaberto= E, pois iaberto = 0. Um bom amperômetro (Ra,int-->0) conectado diretamente entre os eletrodos (curto-circuitando a pilha), fornece Icc = E/r, uma vez que Ucc = 0. Da leitura da f.e.m. E (via voltômetro) e da corrente de curto circuitoicc (via amperômetro) obtemos: r = E/icc . Para nossa montagem esse valor resultou ao redor dos 3 000 ohms e = 0,7 V.
Para as duas pilhas em série, formando nossa batateria teremos Ebat. = 1,4 V e rbat. = 6 000 WSob d.d.p. útil de 1,2 V, teremos i = (Ebat.- U)/r = (1,4 - 1,2)/6000 = 3 x 10-5 A, que são suficientes para o funcionamento do relógio digital.
Como dissemos, como eletrólito podemos usar limão, abacaxi, pepino, uvas, cebolas etc. e, como eletrodos podemos usar os pares cobre/zinco, magnésio/ferro, alumínio/cobre, prego zincado/cobre etc. Para cada pardeve-se testar, antes de ligar no relógio, qual a polaridade obtida (sob risco que 'queimar' o cristal de quartzo) para a bateria. Por exemplo, se for usado eletrodos de magnésio e de ferro, o magnésio será o terminal negativo e o ferro o terminal positivo. Calculadoras e jogos eletrônicos também funcionam com tais baterias 'culinárias'. Eis abaixo uma 'tomateria'; uma bateria de tomates!
Mais teoriaAs reações nas células voltáicas são:
catodo:    Zn <==> Zn2 + 2e
anodo:  2H+ + 2e <==> H2 
A F.E.M. da reação vem expressa por: E(Zn,Zn2,2H+,H2) = Eo + (RT/nF).ln([Zn2+]/[H+]2). O eletrodo de cobre opera apenas como coletor de elétrons, podendo ser substituído por platina ou outro metal inerte.

Comentários

Postagens mais visitadas deste blog

Exercícios de Física transformar km/h em m/s.

EXERCÍCIOS RESOLVIDOS - Converter/transformar km/h em m/s. 01) Um carro esta percorrendo uma via em linha reta a velocidade de 36km/h. Qual a velocidade deste carro em m/s? 36km/h =        36:3,6 =  10m/s  A velocidade do carro é 10m/s. 02) Um pássaro esta sobrevoando um prédio a  velocidade de 54km/h.  Qual a velocidade deste  pássaro em m/s? 54km/h 54:3,6= 15m/s  A velocidade do passaro é 15m/s 03) Ao passar sobre um aeroporto o avião diminuí sua  velocidade para 43,2km/h.  Qual a velocidade deste  avião em m/s? 43,2km/h 43,2:3,6= 12m/s A velocidade do avião é 12m/s Transformação de km/h para m/s (SI) Para transformar Km/h para m/s , basta dividir por 3,6. Para transformar m/s para Km/h , basta multiplicar por 3,6. Exemplos: a) Transformando km/h para m/s 72 km/h = 72:3,6 = 20 m/s b) Transformando m/s pra km/h 40 m/s = 40 . 3,6 = 144 km/h

Exercícios velocidade media 9° ano resolvidos

Exercícios - Velocidade escalar 1. Um atleta correu 400m em 80s. Qual a sua velocidade média? Resposta: 5m/s 2. Um avião voa com velocidade constante de 980 Km/h. Calcular o espaço percorrido em 24 min. Resposta: 392Km 3. Calcular, em m/s, a velocidade de um móvel que percorre 14,4 Km em 3 min. Resposta: 80m/s 4. Um móvel percorreu 43400 cm com velocidade de 28 m/s. Calcular o tempo gasto no trajeto. Resposta: 15,5 s 5. Uma moto percorreu 42000 m com velocidade de 70 Km/h. Calcule quantos minutos foram gastos para realizar o percurso. Resposta: 36 min 6. Calcule o percurso que um ciclista faz em 30 min com velocidade média de 40 Km/h. Resposta: 20Km 7. Um veículo percorre 450 Km em 1h15min. Calcule sua velocidade média em m/s. Vm = ? m/s ∆S = 450Km = 450 x 1000 = 450000m ∆t = 1h15min = 60min + 15min = 75min x 60= 4500s Vm = ∆S/∆t Vm = 450000/4500 Vm = 100m/s 8. Numa corrida de Fórmula 1 a volta mais rápida foi feita em 1min20s, com velocidade média de 180 Km/h. Qual o compriment

Dilatação Anômala da Água Exercícios

DILATAÇÃO ANÔMALA DA ÁGUA A água possui um comportamento anômalo em sua dilatação. Observe o diagrama volume x temperatura a seguir, no qual e mostrado esse comportamento incomum da água. Quando uma substância é aquecida, ela recebe energia de forma que suas moléculas ficam agitadas, passando a ocupar um maior volume, ou seja, sofre dilatação. O oposto ocorre quando uma substância é resfriada, pois ela perde energia e suas moléculas tendem a ficar bem próximas umas das outras, causando uma contração no volume. Isso faz com que, normalmente, a matéria no estado sólido ocupe menos volume do que quando está no estado líquido. Ao contrário do que acontece com a maioria das substâncias, a água possui um comportamento anômalo: quando é aquecida, entre os intervalos de 0 e 4º C, ela sofre contração e depois começa a dilatar-se, ou seja, quando a água está em seu estado sólido, ela tem volume maior do que no estado líquido nesse intervalo de temperatura. Esse comport