Questões resolvidas
Os diagramas de Venn são utilizados na melhor visualização das propriedades dos conjuntos, facilitando cálculos e a interpretação de situações problema.
A relação entre tais conteúdos pode ser feita através da união de conjuntos envolvendo número de elementos. Primeiramente, explique as propriedades do número de elementos da união de dois conjuntos e posteriormente da união de três conjuntos.
Número de elementos da união de dois conjuntos
Consideremos dois conjuntos A e B, iremos determinar os elementos de A por n(A), os elementos de B por n(B), a união de A com B por n(A U B) e a intersecção de A com B por n(A ∩ B). Demonstre a relação utilizando o diagrama:
A relação entre tais conteúdos pode ser feita através da união de conjuntos envolvendo número de elementos. Primeiramente, explique as propriedades do número de elementos da união de dois conjuntos e posteriormente da união de três conjuntos.
Número de elementos da união de dois conjuntos
Consideremos dois conjuntos A e B, iremos determinar os elementos de A por n(A), os elementos de B por n(B), a união de A com B por n(A U B) e a intersecção de A com B por n(A ∩ B). Demonstre a relação utilizando o diagrama:
n(A U B) = n(A) + n(B) – n(A ∩B)
Número de elementos da união de três conjuntos
Considerando os conjuntos A, B e C teremos a seguinte relação na determinação do número de elementos:
Número de elementos da união de três conjuntos
Considerando os conjuntos A, B e C teremos a seguinte relação na determinação do número de elementos:
n(A U B U C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(A ∩ C) – n(B ∩ C) + n(A U B U C)
1) ( UFSE) Os senhores A, B e C concorriam à liderança de certo partido político. Para escolher o líder, cada eleitor votou apenas em dois candidatos de sua preferência. Houve 100 votos para A e B, 80 votos para B e C e 20 votos para A e C. Em consequência:
a) venceu A, com 120 votos.
b) venceu A, com 140 votos.
c) A e B empataram em primeiro lugar.
d) venceu B, com 140 votos.
e) venceu B, com 180 votos.
b) venceu A, com 140 votos.
c) A e B empataram em primeiro lugar.
d) venceu B, com 140 votos.
e) venceu B, com 180 votos.
Votos recebidos pelo candidato A = 100 + 20 = 120
Votos recebidos pelo candidato B = 100 + 80 = 180
Votos recebidos pelo candidato C = 80 + 20 = 100
Resposta letra e.
2) (Unifap) O dono de um canil vacinou todos os seus cães, sendo que 80% contra parvovirose e 60% contra cinomose. Determine o porcentual de animais que foram vacinados contra as duas doenças.
Resolução:
80 – x + x + 60 – x = 100
140 – 2x + x = 100
– x = 100 – 140
– x = – 40
x = 40
O porcentual de animais vacinados contra as duas doenças é de 40%.
3) Dez mil aparelhos de TV foram examinados depois de um ano de uso e constatou-se que 4.000 deles apresentavam problemas de imagem, 2.800 tinham problemas de som e 3.500 não apresentavam nenhum dos tipos de problema citados. Então o número de aparelhos que apresentavam somente problemas de imagem é:
a) 4 000 b) 3 700 c) 3 500 d) 2 800 e) 2 500
Resolução:
Observe o diagrama construído com base no enunciado, onde I é o conjunto dos que apresentavam defeito na imagem, S o conjunto dos que apresentavam problemas de som e N o conjunto daqueles que não apresentavam nenhum defeito citado.
Temos que 4000 - x + x + 2800 - x + 3500 = 10000, onde x é o números de televisores que apresentavam, ao mesmo tempo, os dois problemas citados. Segue que x = 10300 - 10000 = 300. Então o número de aparelhos que apresentavam somente problemas de imagem é 4000 - x = 4000 - 300 = 3700.
resposta letra B.
4) (PUC) Numa comunidade constituída de 1800 pessoas há três programas de TV favoritos: Esporte (E), novela (N) e Humanismo (H). A tabela abaixo indica quantas pessoas assistem a esses programas.
Programas | E | N | H | E e N | E e H | N e H | E, N e H | Nenhum |
Número de telespectadores | 400 | 1220 | 1080 | 220 | 180 | 800 | 100 | x |
Através desses dados verifica-se que o número de pessoas da comunidade que não assistem a qualquer dos três programas é:
Resolução:
(A) 200 | (C) 900 |
(B) os dados do problema estão incorretos. | (D) 100 (E) n.d.a. |
Resolução:
No diagrama de Venn-Euler colocamos a quantidade de elementos dos conjuntos, começando sempre pela interseção que tem 100 elementos.
Então, 100 + 120 + 100 + 80 +700 + 200 + 300 + x = 1800. Segue que, 1600 + x = 1800. Logo, o número de pessoas da comunidade que não assistem a qualquer dos três programas é: x = 1800 - 1600 = 200. Assim, (A) é a opção correta. |
4) Em uma escola foi realizada uma pesquisa sobre o gosto musical dos alunos. Os resultados foram os seguintes:
458 alunos disseram que gostam de Rock
112 alunos optaram por Pop
36 alunos gostam de MPB
62 alunos gostam de Rock e Pop
Determine quantos alunos foram entrevistados.
Gostam somente de Rock = 396
Gostam somente de Pop = 50
Gostam de Rock e Pop = 62
Gostam de MPB = 36
396 + 50 + 62 + 36 = 544
Através da distribuição dos dados no diagrama constatamos que o número de alunos entrevistados é igual a 544.
Gostam somente de Pop = 50
Gostam de Rock e Pop = 62
Gostam de MPB = 36
396 + 50 + 62 + 36 = 544
Através da distribuição dos dados no diagrama constatamos que o número de alunos entrevistados é igual a 544.
Comentários